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Recent experiments have measured exchange bias in ferromagnetic/BiFeO3 systems. Bias strength scales
with the length of 109° ferroelectric domain walls in the multiferroic BiFeO3 and only a small training effect
is observed. In this paper these unusual behaviors are partly accounted for using a one dimensional phenom-
enological Landau model. It is shown that antiferromagnetic domain walls may be pinned by ferroelectric
domain walls in BiFeO3 due to magnetoelectric coupling in the model and may have a net moment due to
Dzyaloshinskii-Moriya interaction. Therefore there is a pinned net magnetic moment that can give rise to
exchange bias. For Co /BiFeO3, bias is calculated as a function of temperature and domain-wall density and
matches well with experiment.
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I. INTRODUCTION

Exchange bias �a shift in the hysteresis loop� in various
ferromagnets �NiFe, CoFeB� has been experimentally dem-
onstrated when those materials are exchange-coupled to
ferroelectric and antiferromagnetic �multiferroic� BiFeO3.1,2

The potential to manipulate magnetic bias using an electric
field3 is very exciting for technological applications, such as
in the design of new memories,4 especially at room tempera-
ture. However, the mechanism by which exchange bias arises
in multiferroic structures is still not well understood and
therefore the design of multifunctional devices utilizing this
effect is limited. Also, the exchange bias behavior appears to
be different from that seen in traditional ferromagnetic/
antiferromagnetic systems. Firstly, no training effect has
been measured on short time scales;2 the bias strength does
not decrease on consecutive cycling of the applied field. Sec-
ondly, there is experimental evidence that the bias strength
scales with the total length of 109° ferroelectric domain
walls in the BiFeO3.5

In this paper a phenomenological model that partly ac-
counts for these puzzling observations is presented. It is pro-
posed that antiferromagnetic �AFM� domain walls in BiFeO3
are pinned by ferroelectric �FE� domain walls via magneto-
electric coupling. Such pinning was first seen in YMnO3
�Ref. 6� with FE domain walls necessarily coinciding with
AFM domain walls. It is also shown that AFM domain walls
in our model for BiFeO3 carry a net magnetic moment due to
a Dzyaloshinskii-Moriya �DM� interaction �weak
ferromagnetism�.7,8 This means there is a pinned net moment
in multiferroic BiFeO3 that causes bias in the attached ferro-
magnet �FM�. For reasonable estimates of the material pa-
rameters in BiFeO3, it will be shown that the bias in the
model matches very well with that measured in experiment.
AFM domain walls have previously been identified as pos-
sible sources of uncompensated spins giving rise to exchange
bias, for example, see Ref. 9.

It should be noted that recently an alternative mechanism
was put forward to explain exchange bias at perovskite/
perovskite multiferroic interfaces10 which is more general

than the one described here. That mechanism relies on as-
sumption of a perfect interface with oxygen atoms mediating
superexchange between the FM and AFM ions and therefore
may not be useful for rougher interfaces or for metal/oxide
structures. Moreover, it cannot account for why exchange
bias strength scales with the length of FE domain walls in
BiFeO3.

In Sec. II a one-dimensional �1D� phenomenological
model for BiFeO3 is presented and the domain-wall pinning
is demonstrated. Also, the DM interaction is shown to lead to
a possible net magnetic moment in a sample that has equal
volumes of the two different AFM domains. In Sec. III the
model is extended to treat a FM /BiFeO3 interface and ex-
change bias is calculated. In Sec. IV the results are summa-
rized and the elements lacking in the model are highlighted.

II. DOMAIN-WALL PINNING IN BiFeO3

A 1D Landau theory is used to model the BiFeO3 system
in order to demonstrate the pinning of AFM and FE domain
walls. This model is similar to that used by Daraktchiev et
al.11,12 for a paramagnet with a FE domain wall present. In
Ref. 12 these authors also studied the effect that an isolated
FE domain wall has on the weak magnetic moment within an
AFM domain in BiFeO3. However, they did not look at the
idea of coupled AFM and FE walls as is done here. More-
over, the AFM was treated as a weak ferromagnet with a
single order parameter M in Ref. 12, rather than being
treated using a two sublattice model such as that described
below.

The FE polarization is assumed to lie along a single axis
and so can be represented by a scalar P. This simplifies the
model considerably but means that only so-called 180° FE
domain walls can exist, which separate domains with polar-
ization P along the same axis but in opposite directions.
Thus we cannot account for the experimental observation
that only 109° FE domain walls, and not 180° or 71° FE
domain walls, lead to bias.5 This represents an interesting
three-dimensional microscopic problem for future work
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which is outside the scope of the phenomenological 1D
model presented here.

The free energy of the multiferroic material is written as a
continuous integral over position y

F =� dy��K + kP2��ma
2 sin2 �a + mb

2 sin2 �b�

− bM�ma cos �a + mb cos �b� + Jmamb cos��a − �b�
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The angles �a and �b represent the directions of the two
AFM sublattice magnetizations, respectively, relative to the
+x axis in the x-y plane. This is illustrated in Fig. 1 where an
AFM domain wall is schematically shown between domains
labeled 1 and 2, respectively. ma and mb are dimensionless,
normalized magnetizations and may vary with position y.
They are given by the normalized thermal averages ma/b
= 
Ma/b� /M. M is the zero temperature saturation magnetiza-
tion of the material and the thermal average is calculated via


Ma/b�
M

� L��Ha/b
ef f · ma/b

kBT
� ,

where L�x�=coth�x�−1 /x is the Langevin function and
Ha/b

ef f =−�F /�Ma/b is the effective magnetic field felt by the
sublattice magnetizations. �=5�B is the magnetic moment in
the AFM, kB is Boltzmann’s constant, and T is temperature.

The first term in the integrand of Eq. �1� is the uniaxial �x
axis� anisotropy energy density, with an anisotropy constant
given by a second-order Taylor expansion with respect to P,
namely, K+kP2. A term linear in P is not allowed by the
symmetry of BiFeO3.13 A possible explanation for the phe-
nomenological magnetoelectric coupling term with strength
k is that a change in the electric polarization P gives rise to
a Stark splitting of electron energy levels, which in turn leads
to a change in the spin-orbit coupling giving rise to magnetic
anisotropy.13,14

The second term in the integrand of Eq. �1� is the Zeeman
energy density with field applied along the x axis with
strength b. The third term describes the AFM exchange be-
tween the sublattices with J�0. The fourth term is the stiff-
ness of the AFM magnetization and favors a wider domain
wall. Again, the stiffness constant is given by a Taylor ex-

pansion with respect to P, C+cP2. A physical mechanism
behind this phenomenological magnetoelectric coupling term
with strength c, is that a change in the FE polarization may
alter the distance between AFM ions and therefore change
the effective exchange and stiffness constants.13,15 The effect
of P on the exchange constant J is ignored here as it does not
result in domain-wall pinning.

The fifth term in Eq. �1� is the Dzyaloshinskii-Moriya
energy density with strength D. It results in a very slight
canting of the AFM sublattices by an angle of 0.14°,16 result-
ing in a weak ferromagnetic moment in the �y direction in
domain 1 and 2, respectively �see Fig. 1�, as will be dis-
cussed below. Here we assume that D has no dependence on
P. The last line of Eq. �1� gives the free-energy density of the
FE with Landau constants � and �, and stiffness constant �.
To include the effect of temperature, we assume that �
=A�Tc

P−T�, where A is a constant and Tc
P=1123 K is the

ferroelectric Curie temperature.13

Before examining bias, the effect of the magnetoelectric
coupling �with strength given by k and c� on the domain
walls in the isolated BiFeO3 will be studied. The domain-
wall configurations can be found numerically by converting
the integral in Eq. �1� to a finite elements expression, 
dy
→	�i. 	 is the spacing between elements i and must be
small enough that the domain walls can be resolved. The
iteration algorithms for the magnetization angles are found
by making 
F


�a/b,i
=0 and then rearranging for �a/b,i to get an

expression for the n+1 iteration of the form �a/b,i
n+1

= f��a/b,i
n ,ma/b,i

n , Pi
n�, where f is an analytic function. The

same method cannot be used for Pi since the resulting ex-
pression only converges for 	���2� /�� which is the FE
wall width. Instead, we use a forward time central space
algorithm

Pi
n+1 = Pi

n −
�

�


F


Pi
n ,

where � is the size of the “time” step and � is the damping
constant. This algorithm converges for ��

�	2 

1
2 . Finally, the

algorithm for ma/b is given simply by

ma/b,i
n+1 = ma/b,i

n cos2 � + sin2 �L��Ha/b,i
ef f ,n · ma/b,i

n

kBT
� ,

where the angle � is chosen at random to ensure conver-
gence. In general, choosing � close to zero made conver-
gence slower but more likely.

As the starting point for iteration, the known analytic re-
sults for AFM and FE domain walls are used, found when
magnetoelectric coupling is ignored and the integral in Eq.
�1� is taken over an infinite extent

�a�y� = 2 tan−1�e�2K/C�y−y0�� ,

�b�y� = − 2 tan−1�e−�2K/C�y−y0�� ,

FIG. 1. �Color online� Schematic of the AFM domain wall ge-
ometry. The AFM sublattice magnetizations rotate in the x-y plane.
The weak DM canting is not visible.
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P�y� =��

�
tanh�� �

2�
�y − y0�� ,

where y0 is the position of the centre of each wall. With no
demagnetizing or depolarizing energy included, the domain
walls represent a metastable state for the system so the itera-
tion must start sufficiently close to the solution to ensure
convergence. It is assumed that there are two AFM and two
FE domain walls to make use of periodic boundary condi-
tions.

When c�0 and/or k�0, the AFM and FE domain walls
are pinned to one another through magnetoelectric coupling.
This is because in the vicinity of a FE domain wall P→0
and therefore the effective anisotropy and stiffness constants
are locally weaker, making it a favorable place for AFM
domain walls to be positioned. Conversely, when c
0
and/or k
0, the domain walls repel and the centre of the
AFM domains, where the magnetizations are best aligned,
coincide with the FE walls. This suggests that for known
multiferroic systems where the domain walls coincide, the
magnetoelectric coupling is positive within our scheme.

The y component of the magnetic moment of BiFeO3,
mi

y =ma,i sin �a,i+mb,i sin �b,i, is plotted as a function of po-
sition y= i	 in Fig. 2�a�. The material parameters used are
given in the figure caption. It is seen that the DM interaction
gives rise to a weak moment in the two domains in �y
direction, respectively. The domain walls are located at y
=50 and 150 nm. Since domain 1 and domain 2 occupy
equal volumes, there is not a net moment produced in the y
direction.

However, there is also a moment in the AFM domain
walls in the �x direction, depending on the chirality of the
wall. If within the AFM domain wall �a passes through � /2
then the weak DM moment is in the +x while if instead �a
passes through −� /2 then the weak moment is along −x. It is
assumed from now on that the two AFM domain walls have
opposite chirality ��a passes through � /2 in both walls� so
that a net moment is produced in the +x direction ��imi

x

�0�, as illustrated in Fig. 2�b� where mi
x=ma,i cos �a,i

+mb,i cos �b,i is plotted as a function of position y= i	. Al-
though the net moment averaged across the whole 200 nm is
quite small �under 0.1% of M�, this is still large enough to
give a bias, as will be shown numerically in the next section.
A crude estimate of the effective exchange field felt by a FM
due to this moment at zero temperature is given by bex
�0.001�Jint /Mf, where Mf is the magnetization of the FM
and Jint is the exchange interaction across the FM/AFM in-
terface. We estimate Jint�4�106 J /m3 and Mf �1.44
�106 A /m for Co giving bex�0.003 T �Hex=30 Oe�.

III. EXCHANGE BIAS

To calculate exchange bias, a FM contribution is added to
the 1D free-energy density �Eq. �1��

F =� dy�Kf sin2 � f +
1

2
Cf� �� f

�y
�2

− bMf cos � f

− Jint�cos � f�ma cos �a + mb cos �b�

+ sin � f�ma sin �a + mb sin �b��	 . �2�

The FM magnetization is assumed to lie in the x-y plane and
the angle it makes with the +x direction is given by � f. The
first term in Eq. �2� is the anisotropy �with constant Kf� fa-
voring alignment along the x axis. The second term is the
stiffness energy with constant Cf and the third is the Zeeman
energy. The magnetization Mf is assumed constant since the
ordering temperature is typically much larger than the AFM
Néel temperature �TN�650 K for BiFeO3 �Ref. 13� whereas
the Curie temperature for Co, for example, is 1388 K �Ref.
21��. The last term in Eq. �2� is the exchange coupling be-
tween the FM and the AFM across the x-y plane.

The numerical calculations in Sec. II can be repeated with
the addition of these energies to find �a/b, ma/b, P, and � f at
each finite element site i. The iteration algorithm for � f ,i is
found by rearranging 
F


� f ,i
=0. Two different solutions are ob-

tained corresponding to local energy minima depending on
whether iteration is begun from � f ,i=0 or �. Making Jint=0,
these two solutions have equal energy when b=0. In other
words, a double well exists with symmetry that can be bro-
ken by an applied field. However, when Jint�0, the two
minima have different energies at zero field due to interac-

FIG. 2. �Color online� The normalized magnetic moment of
BiFeO3 in the �a� y direction �mi

y =ma,i sin �a,i+mb,i sin �b,i� and
�b� x direction �mi

x=ma,i cos �a,i+mb,i cos �b,i� as a function of po-
sition y= i	. A net moment is produced in the +x direction when the
two domain walls at y=50 and 150 nm have opposite chirality. 	
=0.25 nm and T=300 K. For BiFeO3, J=4.3�108 J /m3, found
by considering that the Néel temperature TN�650 K �Ref. 13�, and
C=107 pJ /m. The magnetization is found by considering that each
Fe ion has a moment 5�B in a unit cell roughly �0.4 nm�3 in vol-
ume �Ref. 17� giving �0M =0.94 T. K�6.6 MJ /m3 according to
Ref. 18. It is calculated that D�2 MJ /m3 in order for a canting
angle �=0.14° to be produced in the domains, which is consistent
with a net moment of 0.012�B measured per Fe �Ref. 16�. The
Landau parameters are taken to be �=9.8�105�T
−1123� C−2 m2 N, �=2.6�109 C−4 m6 N �Ref. 19� and �=6
�10−12 C−2 m4 N �Ref. 20�, which are within an order of magni-
tude of the parameters used in Ref. 12. The magnetoelectric cou-
pling is assumed small; cP2=0.01C and kP2=0.01K.
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tion with the net moment in the AFM. The strength of the
exchange bias can be calculated by finding the applied field,
b=bex, necessary for the two solutions with � f ,i�0 and � to
have equal energy.22

The material parameters for BiFeO3 are derived from ex-
periment and are listed in the caption of Fig. 2. For the FM
the values for Co are assumed: Mf =1.44�106 A /m, Kf

=0.53 MJ /m3, and Cf =10.3 pJ /m.23 The only free param-
eter is the interface coupling between the FM and the AFM.
It is assumed to be 5% of the AFM exchange coupling �Jint

=0.05J� since this gives exchange bias of the correct order of
magnitude. This seems like a reasonable assumption as it
means the interface coupling is less than that inside either
material. Experiment suggests that in fact Jint decreases as a
function of temperature5 since the coercivity of a CoFe film
on BiFeO3 decreases. However, Jint is made constant so as to
isolate the effect of temperature and domain-wall density on
bias.

In Fig. 3�a� the magnitude of the exchange bias �Hex�
=104� �bex� is plotted as a function of temperature for a 200
nm sample �domain wall density is 0.01 nm−1�. Extrapolat-
ing to T=0, �Hex��40 Oe, which matches closely to the es-
timate �Hex��30 Oe calculated from the net moment in the
isolated AFM. The bias increases with increasing tempera-
ture if Jint is constant. Considering that Jint decreases with T,
as already mentioned, it can be understood why bias stays
roughly constant with temperature, as seen in experiment
�see Fig. 3 of Ref. 5�. The bias increases in Fig. 3�a� because
the magnetization in the antiferromagnet �ma/b� decreases. At
first, this may seem counterintuitive since the net moment
�mi

x would also be expected to decrease leading to a smaller
bias at higher temperatures. However, as the magnetization
decreases, the exchange interaction between the FM and the
AFM �which varies as ma/b� begins to dominate the other
AFM free-energy contributions �which vary as ma/b

2 , see Eq.
�1��. Hence the net moment in the AFM is enhanced and the
effective field felt by the FM increases.

In fact, the interface exchange characterized by Jint domi-
nates over the DM interaction at all temperatures. For this
reason it is not strictly correct to refer to a pinned net

moment in the AFM domain walls when the BiFeO3 is at-
tached to the FM. The magnetization in the domain walls
will align along �x according to the direction of the FM
since the interface exchange dominates. In the +x direction
this alignment acts with the DM interaction and in the −x
direction the alignment acts against the DM interaction. This
causes the two solutions with � f ,i�0 and �, respectively, to
have unequal energies and results in exchange bias.

In Fig. 3�b� the magnitude of the bias at T=300 K is
plotted as a function of AFM domain wall density �the in-
verse of the distance between AFM walls�. The same linear
relationship is observed as is seen in experiment �see Fig. 2
of Ref. 5�. The plot extrapolates back to the origin suggesting
that there is no bias without pinned AFM domain walls
present.

The fact that no training effect is seen in one experiment2

can be explained qualitatively. In traditional FM/AFM ex-
change bias systems, training can be modeled using a do-
main state model.24 In this model, the cycling of a magnetic
field that can reverse the FM magnetization also causes slight
rearrangement of the AFM domain structure through ther-
mally assisted processes. Hence, each hysteresis loop shows
a smaller exchange bias than the last as the AFM slowly
rearranges to reduce all competing interactions. In the phe-
nomenological model presented here, the AFM domain walls
are pinned by the FE domain walls and hence less of a train-
ing effect may be expected. Future work may examine the
size of this pinning potential to see how robust it is to ther-
mal processes under different field sweep rates. The present
model cannot examine this since there is no mechanism for
the system to escape a metastable minimum through thermal
processes.

IV. CONCLUSION

In summary, attraction and repulsion of antiferromagnetic
and ferroelectric domain walls have been demonstrated in a
1D phenomenological model for BiFeO3. In addition, ex-
change bias has been predicted in a Co /BiFeO3 bilayer. The
bias is due to two main features: the existence of AFM do-
main walls that are pinned by FE domain walls in the
BiFeO3, together with a net moment in the domain walls due
to Dzyaloshinskii-Moriya interaction. For reasonable esti-
mates of the exchange coupling between Co and BiFeO3, the
exchange bias is approximately 150 Oe at room temperature
and for domain-wall density of 0.01 nm−1. This value agrees
well with experimental results for Co0.9Fe0.1 /BiFeO3 bilayers
containing 109° FE domain walls.5

The main drawback of this theory is that it does not ex-
plain why only 109° FE domain walls pin the AFM domain
walls, and not 180° or 71° FE domain walls. A full three-
dimensional microscopic model is needed to investigate why
this is so. Moreover, as mentioned earlier, only if the neigh-
boring AFM domain walls have opposite chirality is a net
moment produced. It does not result from field cooling since
the BiFeO3 is grown before the FM is deposited �in an

FIG. 3. �Color online� Exchange bias in a model Co /BiFeO3

system as a function of �a� temperature and �b� domain-wall density.
Conservative numerical error bars are drawn, as are dashed lines
joining the points to highlight the trends. The parameters used for
the numerical simulation are given in the caption of Fig. 2 and in
the text. In panel �a�, the domain-wall density is 0.01 nm−1 and in
panel �b� T=300 K.
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applied field� and is not heated.5 Hence it is an open question
as to why the domain walls arrange with chirality such that a
net moment is produced. It is possible that neighboring do-
main walls in a 1D model are most often part of the same
wall in a two-dimensional picture and therefore necessarily
have identical moments. This idea needs to be explored in
future work.
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